If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+5=33
We move all terms to the left:
7x^2+5-(33)=0
We add all the numbers together, and all the variables
7x^2-28=0
a = 7; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·7·(-28)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*7}=\frac{-28}{14} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*7}=\frac{28}{14} =2 $
| −24=-3w+21 | | 6(x-3)=4(3-x) | | -5x^2-106x-561=0 | | a2-a-20=0 | | g-(-24)=3 | | 4x-8=7x+-2 | | 6-3y=-12 | | 72+2y=180 | | t(t+10)=180 | | (8x+9)+(4x+13)=13x+11 | | (-4x-2x)=-28 | | 2u+15=33 | | 2t+10=180 | | (-4x-2x)=+ | | 2x-4=4+3x | | 11x-1=3x+7 | | t+(-22)=-14 | | 2x^2+20x-142=0 | | 95-57=x | | h+21=8 | | t+(t+10)=180 | | 6v-24=-9(v+1) | | 3(2x+3)/13=2x=7 | | s-(-12)=11 | | (57+150)=x | | u-(-19)=21 | | 4–3x=34 | | -4x^2+10=-26 | | a+1.5=2a-1 | | 4.1=-0.5(x-7.1) | | 2(14q+−7)-3q=9 | | j-13=-8 |